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Abstract
Polypropylene-grafted-maleic anhydride (PP-g-MAH) is known as an excellent interface modifier
that can improve the interface between carbon fiber (CF) and PP. In this study, the effect of
PP-g-MAH content on the physical properties of PP composites containing long-fiber CFs was
investigated. It was confirmed that PP-g-MAH acted as an interface modifier between the interface
between CF and PP, and when an appropriate amount of 10 wt% was incorporated, the tensile
strength, tensile modulus, Izod impact strength, and heat deflection temperature were improved by
110%, 50%, 86.7% and 12.7%, respectively. On the other hand, the blending effect of PP-g-MAH,
which is a low molecular weight, was greater than the compatibilizing effect when the PP-g-MAH
content was mixed above the appropriate content, thereby reducing the physical properties.
Therefore, the content of PP-g-MAH as the interface modifier must be designed to be the optimum
content considering the CF content to be mixed in order to optimize the physical properties of the
composite material.

1. Introduction

Carbon fiber reinforced plastics (CFRPs) are attracting attention as lightweight structural materials that
replace metals because they exhibit excellent mechanical properties compared to density [1–5]. In particular,
they are used in various fields that require weight reduction, from leisure goods to automobiles and space
aircrafts [6–8]. The CFRP can be classified into thermosetting and thermoplastic CFRPs according to the
type of used resin [2, 9, 10]. In addition, depending on the shape of the filler, it can be classified into
continuous fiber, long fiber, and short fiber filled CFRPs [11–13].

In general, thermosetting CFRPs mainly using epoxy resins are relatively excellent and stable in terms of
various physical properties. However, they have disadvantages in that the processing time is relatively long
and recycling is not easy [2]. On the other hand, thermoplastic CFRPs are somewhat disadvantageous in
general properties, especially thermal stability, but are attracting attention recently because they can be
recycled and processed quickly [2]. Conventional CFRP market is based on aircrafts and sporting goods,
which is sensitive to safety issues and less sensitive to production time or parts cost [14]. In recent years, in
contrast, since the CFRP is applied as an automobile material that is sensitive to production time and parts
cost, interest in the thermoplastic CFRP is increasing due to the recycling issue [15].

One of the most important factors influencing the mechanical properties of CFRP is the shape of CF. It is
known that the longer the length of the filler, i.e. in the order of continuous fiber > long fiber > short fiber,
the better the reinforcing effect. On the other hand, the longer the CF length, the more restrictive the
processability. Therefore, it is required to select a suitable filler in consideration of the application purpose.
In particular, in order to be used as an automobile material that is sensitive to unit cost and processing time,
not only the characteristics of the material but also the processing time must be considered [2].
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Table 1. Composition of the fabricated composites.

Sample PP (wt%) CF (wt%) PP-g-MAH (wt%)

PP/CF/PP-g-MAH 0 wt% 97 3 0
PP/CF/PP-g-MAH 5 wt% 92 3 5
PP/CF/PP-g-MAH 10 wt% 87 3 10
PP/CF/PP-g-MAH 15 wt% 82 3 15

Figure 1. Schematic of the fabrication process for PP/CF/PP-g-MAH composites.

Polypropylene (PP) is a general thermoplastic resin that is used not only for clothing, toys, industrial
parts, etc but also for automobiles. However, since PP and CF show poor miscibility, interfacial properties
could be limited when manufacturing a composite material. As one method to solve this problem, it has been
reported that by introducing maleic anhydride (MAH) into PP, the interfacial properties between the CF and
the PP matrix can be improved [16].

Cho et al [17] investigated the co-crystallization behavior of blends of PP and PP-g-MAH and reported
that the phase separation between the PP and PP-g-MAHmolecules was observed when the cooling rate was
very slow in the case of non-isothermal or the crystallization temperature was relatively high in the case of
isothermal. Razak et al [18] observed the best tensile and flexural strength of the PET/PP-g-MAH blend
when 4 phr of PP-g-MAH was incorporated. Järvelä et al [19] summarized the relationship between the
morphological characteristics and dynamic mechanical properties of homo PP and PP-g-MAH blends. Karsli
and Aytac [20] reported that the introduction of PP-g-MAH improves the tensile strength, modulus and
hardness of short CF reinforced PP composites.

Relatively few papers have been reported to identify the effect of PP-grafted (g)-MAH content on the
physical properties of PP filled with long fiber-type CFs. In this study, the effect of PP-grafted (g)-MAH
content on the physical properties of PP filled with long fiber-type CFs that can secure the processability
while exhibiting satisfactory properties was investigated. When the optimum content of MAH was
incorporated, it was confirmed that physical properties such as tensile strength, tensile modulus, Izod impact
strength, and heat deflection temperature (HDT) were improved.

2. Experimental

2.1. Materials
PP-impregnated long fiber thermoplastics (LFT, PP1350, Lotte Chemical Co., Seoul, Korea) based on CFs
which can improve the physical properties were used as reinforcement. Commercial PP (J-160H, Lotte
Chemical Co., Seoul, Korea) was prepared as matrix and PP-g-MAH (Adpoly PH200, MAH content of
5 wt%, Lotte Chemical Co., Seoul, Korea) which is made fromMAH grafting onto the PP using reactor
polymerization method was used as an interface modifier to enhance the interfacial property between the
reinforcement and the matrix. Melt flow index of the commercial PP and PP-g-MAH was 16 and
100 g 10 min−1, respectively, according to ASTM D1238.
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Figure 2. FE-SEM images of PP/CF/PP-g-MAH composites (a) without PP-g-MAH and incorporated with (b) 5 wt%, (c) 10 wt%
and (d) 15 wt% of PP-g-MAH.

2.2. Composite fabrication
The resin and interface modifier were mixed to target content ratio, listed in table 1, using a twin screw
extruder (L40/D19, Bautek CO, Uijungbu, Korea) at the temperature of 230 ◦C and a screw speed of 100 rpm
with side feeding of LFT, as shown in figure 1. The prepared compounds were fabricated as specimens for
analyzing physical properties using a heating press (D3P-20J, Dae Heung Science, Incheon, Korea) or
lab-scale injection molding machine (CS-183 MMX, Custom Scientific Instruments Inc., Easton, PA, USA)
at a pressure of 15 MPa for 10 min at 200 ◦C.

2.3. Characterization
2.3.1. Morphology
Fracture surface of the composite was coated with platinum in a vacuum for 100 s using a sputter coating
machine (Ion Sputter E-1030, Hitachi High Technologies Co., Tokyo, Japan). The prepared specimen was
observed for analyzing interface between CF and matrix with a field emission scanning electron microscope
(FE-SEM, Nova NanoSEM 450, FEI Corp., OR, USA) at 10 kV.

2.3.2. Mechanical properties
Tensile strength and elongation at break were measured to ASTM D638 standard using a universal testing
machine (Instron 5982, Instron Co., Norwood, MD, USA). Izod impact strength was measured according to
ASTM D256 using an Izod impact test machine (Model 892, Tinius Olsen, Horsham, PA, USA). Flexural
modulus was measured according to ASTM D790 standard, and HDT was analyzed according to ASTM
D648 standard.
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Figure 3. Tensile properties of the fabricated composites.

Figure 4. Izod impact strength of the fabricated composites measured at−30 ◦C and 23 ◦C.
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Figure 5. (a) Elongation at break and (b) HDT of the fabricated composites.

3. Results and discussion

FE-SEM images of the fracture surfaces of the prepared specimens are shown in figure 2. In the CF
protruding from the fracture surface of the specimen without PP-g-MAHmixing, it can be observed that the
resin is not stained. On the other hand, in the fracture surfaces of the specimens containing 5, 10, and
15 wt% of PP-g-MAH, it can be observed that the resin is embedded on the surface of the CF. These results
indicate that PP-g-MAH acted as an interface modifier between the CF and resin, thereby enhancing the
interfacial bonding between the CF and resin [20].

Figure 3 shows the tensile properties of the prepared composites. Tensile strength increased when
interface modifier was added. In particular, when 10 wt% of PP-g-MAH was added, it was increased by about
110% compared to the control, resulting in 61.9 MPa. Tensile modulus also showed the similar trend. When
PP-g-MAH was incorporated in 10 wt%, it was improved by about 50% to achieve 3.09 GPa. These results
indicate that PP-g-MAH improved the interfacial bonding as an interface modifier and transfers the external
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load applied to the specimen to the CF well, thereby increasing the tensile properties of the composite
material.

Figure 4 shows the results of the Izod impact test at 23 ◦C and−30 ◦C. Irrespective of temperature
conditions, the Izod impact strength was improved with the incorporation of PP-g-MAH. In particular,
when PP-g-MAH of 10 wt% was added, compared to the control, the impact strengths were improved by
about 63.6% at 23 ◦C, from 53.9 to 81.8 J m−1, and by about 86.7% at−30 ◦C, from 29.4 to 54.9 J m−1,
respectively. These impact property results were also because the interfacial bonding between the resin and
the CF was improved by PP-g-MAH [20].

Elongation at break is shown in figure 5(a). In the case where PP-g-MAH was not mixed, it can be
interpreted that the interfacial bonding between CF and the resin was weak, so that it was difficult to transfer
the load, resulting in slip at the interface and in high elongation [21]. However, as the content of PP-g-MAH
increased, the interfacial bonding between CF and the resin became stronger, so that the load applied to the
specimen can be completely transferred and the elongation decreased. Therefore, it was interpreted to show
the same elongation after the 10 wt% composition in which the interfacial bond was completely formed.
HDT results are shown in figure 5(b) to analyze the thermal properties of the manufactured composite
material. Karsli and Aytac [20] reported that the incorporation of interface modifiers increased the heat
resistance of the PP matrix and composites. However, when 15 wt% of PP-g-MAH was incorporated, it was
observed that it acts as a small molecule in the resin and rather reduces the heat resistance.

From the results of the overall physical properties, it can be observed that as the PP-g-MAH content
increases, the physical properties are maximized up to 10 wt% and slightly decreased at 15 wt%. These results
can be analyzed that the addition of PP-g-MAH contributed to improving the interfacial bonding between
the CF and the resin, and formed the optimum content at 10 wt%. In addition, at 15 wt% content, the
blending effect of PP-g-MAH, which is a low molecular weight, was greater than the compatibilizing effect,
thereby reducing the physical properties [22].

4. Conclusion

In this study, the effect of PP-g-MAH content on the physical properties of PP filled with LFTs was
investigated. As can be seen from the tensile strength, tensile modulus, Izod impact strength, and HDT
results, it was confirmed that the physical properties were improved when PP-g-MAH was incorporated.
These results imply that the incorporated PP-g-MAH served as an interface modifier between CF and PP
matrix. The physical properties of the composites continued to improve until the content of PP-g-MAH
reached 10 wt%, but when PP-g-MAH of 15 wt% was incorporated, the physical properties of the composites
were reduced. This result was because the blending effect of PP-g-MAH, which is a low molecular weight,
was greater than the compatibilizing effect, thereby reducing the physical properties.
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